67.3k views
0 votes
Solve the differential equation.

(y + sin y)y' = x + x^3

1 Answer

1 vote

(y + \sin y)y'= x + x^3 \\ \Rightarrow (y + \sin y)(dy)/(dx)= x + x^3 \\ \Rightarrow (y + \sin y)dy= \left( x + x^3\right)dx \\ \Rightarrow \displaystyle\int(y + \sin y)dy= \int \left( x + x^3\right)dx \\ \\ \Rightarrow (y^2)/(2) - \cos y = (x^2)/(2) + (x^4)/(4) + C

It is
(y^2)/(2) - \cos y = (x^2)/(2) + (x^4)/(4) + C as you cannot simplify further
User Raymus
by
7.8k points

No related questions found