104k views
4 votes
Which of the following represents the zeros of f(x) = 6x3 + 25x2 − 24x + 5?

User Shazbot
by
5.9k points

2 Answers

1 vote

The given polynomial is


f(x) = 6x^3 + 25x^2 - 24x + 5

By rational root theorem

For a cubic polynomial of the type :

a x³+ b x² + c x + d=0

→ x³ +
(bx^2)/(a) +  (c x)/(a)+(d)/(a)=0

The possible roots of this polynomial is ,
\pm 1, \pm d, \pm (1)/(a) , \pm(d)/(a).

The polynomial f(x) can be written as:
x^3 +(25x^2)/(6)-4 x+(5)/(6)

The possible roots or Zeroes of the polynomial are:


\pm 1,\pm 3, \pm 5,\pm (1)/(2), \pm (1)/(3), \pm (5)/(2)\pm (5)/(3),\pm (5)/(6)

The values of x for which f(x) =0 , are roots or zeroes of the polynomial.

f(1)= 6 +25 -24+5= 12

f(-1)= -6 +25 +24 +5=48

f(3)=162 +225-72+5≠ 0

f(-3)=-162+225+72+5≠0


f((-1)/(2)) =(-6)/(8)+(25)/(4)+12+5=(93)/(4)- (6)/(8)\\eq 0


f((1)/(2)) =(6)/(8)+(25)/(4)-12+5= 7-7=0


f((1)/(3))=(6)/(27)+(25)/(9)-8+5=0 \\\\f((-1)/(3))=(-6)/(27)+(25)/(9)+8+5 \\eq 0


f(5)=750 +625-120+5\\eq 0\\ f(-5)= -750+625 +120+5=0\\f((5)/(2))=(750)/(8)+(625)/(4)-60+5\\eq 0\\f((-5)/(2))=(-750)/(8)+(625)/(4)+60+5\\eq 0\\\\


f((5)/(3))= (750)/(27)+(625)/(9)-40+5\\eq 0\\\\\\f((-5)/(3))= (-750)/(27)+(625)/(9)+40+5\\eq 0\\\\\\f((5)/(6))= (125)/(36)+(625)/(36)-20+5\\eq 0 \\\\\\\\f((-5)/(6))= (-125)/(36)+(625)/(36)+20+5\\eq 0

So , zeroes of f(x) are -5,
(1)/(2),
(1)/(3).

User Isarojdahal
by
6.1k points
3 votes
The zeros of f(x) are {-5, 1/3, 1/2}.
Which of the following represents the zeros of f(x) = 6x3 + 25x2 − 24x + 5?-example-1
User Shahjahan Ravjee
by
6.8k points