Answer:
The answer is below
Explanation:
The possible outcome from rolling two dice is:
1,1 1,2 1,3 1,4 1,5 1,6
2,1 2,2 2,3 2,4 2,5 2,6
3,1 3,2 3,3 3,4 3,5 3,6
4,1 4,2 4,3 4,4 4,5 4,6
5,1 5,2 5,3 5,4 5,5 5,6
6,1 6,2 6,3 6,4 6,5 6,6
The total number of outcomes = 36
a)
P(sum of 5) = 4/36, P(sum of 6) = 5/36, P(sum of 7) = 6/36
Hence:
P(sum of 5 or sum of 6, or sum of 7) = P(sum of 5) + P(sum of 6) + P(sum of 7) = 4/36 + 5/36 + 6/36
P(sum of 5, 6, or 7) = 15 / 36
b)
P(doubles) = 6/36, P(sum of 6) = 5/36, P(sum of 8) = 5/36
Hence:
P(doubles or sum of 6 or sum of 8) = P(doubles) + P(sum of 6) + P(sum of 8) = 6/36 + 5/36 + 5/36
P(doubles or sum of 6 or sum of 8) = 16 / 36
c)
P(sum greater than 8) = 10/36, P(sum lesser than 3) = 1/36
P(sum greater than 8 or less than 3) = P(sum greater than 8) + P(sum lesser than 3) = 10/36 + 1/36
P(sum greater than 8 or less than 3) = 11 / 36
Part c has the least probability of occurrence, hence c is least likely to occur.