Answer:
50.97 m
Step-by-step explanation:
m = Mass of truck
= Coefficient of static friction = 0.4
v = Final velocity = 0
u = Initial velocity = 72 km/h =
![(72)/(3.6)=20\ \text{m/s}](https://img.qammunity.org/2022/formulas/physics/college/g6ad4yq30j30g5pjecjg5y1l38ywnhxnzl.png)
s = Displacement
Force applied
![F=ma](https://img.qammunity.org/2022/formulas/physics/high-school/ihrhtw123j8s81l00k9y4614kll1tbamvz.png)
Frictional force
![f=\mu_s mg](https://img.qammunity.org/2022/formulas/physics/college/f1p9uchs4plagy4r4a5qzt2idx1yvcroog.png)
Now these forces act opposite to each other so are equal. This is valid for the case when the load does not slide
![ma=\mu_s mg\\\Rightarrow a=\mu_s g\\\Rightarrow a=0.4* 9.81\\\Rightarrow a=3.924\ \text{m/s}^2](https://img.qammunity.org/2022/formulas/physics/college/emniwdaxxvz5gyedv9r9baybgqf7u93vy7.png)
Since the obect will be decelerating the acceleration will be
![-3.924\ \text{m/s}^2](https://img.qammunity.org/2022/formulas/physics/college/vl8g7waz7z0iiy54if397sldxqok12o0ms.png)
From the kinematic equations we have
![v^2-u^2=2as\\\Rightarrow s=(v^2-u^2)/(2a)\\\Rightarrow s=(0^2-20^2)/(2* -3.924)\\\Rightarrow s=50.97\ \text{m}](https://img.qammunity.org/2022/formulas/physics/college/xlqhwpmghut5we7cf2u87hqdk1iyuadbf5.png)
So, the minimum distance at which the car will stop without making the load shift is 50.97 m.