64.8k views
0 votes
How many different ordered pairs satisfy both x^{2} + y^{2} = 100 and x^{2} + 2y^{2} = 108?

1 Answer

7 votes

\begin{cases}x^2+y^2=100\\x^2+2y^2=108\end{cases}\\\\\\ \begin{cases}x^2+y^2=100\\x^2+y^2+y^2=108\end{cases}\\\\\\100+y^2=108\\\\y^2=108-100\\\\y^2=8\qquad|√((\ldots))\\\\y=-√(8)\qquad\vee\qquad y=√(8)\\\\\boxed{y=-2√(2)\qquad\vee\qquad y=2√(2)}

We know that
y^2=8 so:


x^2+y^2=100\\\\x^2+8=100\\\\x^2=100-8\\\\x^2=92\qquad|√((\ldots))\\\\ x=-√(92)\qquad\vee\qquad x=√(92)\\\\x=-√(4\cdot23)\qquad\vee\qquad x=√(4\cdot23)\\\\\boxed{x=-2√(23)\qquad\vee\qquad x=2√(23)}

As we see there are 4 such pairs:


x=-2√(23)\qquad y=-2√(2)\\\\x=2√(23)\qquad y=-2√(2)\\\\ x=-2√(23)\qquad y=2√(2)\\\\x=2√(23)\qquad y=2√(2)


User Seanbrant
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories