18,335 views
39 votes
39 votes
Please help me on a, b, and c.

Please help me on a, b, and c.-example-1
User Thomasvdb
by
2.2k points

1 Answer

26 votes
26 votes

Answer:


\textsf{a)} \quad -(26)/(41)\; \sf cm/min


\textsf{b)} \quad -(258)/(1681)\; \sf deg/min


\textsf{c)} \quad 111\; \sf cm^2/min

Explanation:

Define the variables:

  • Let x = width of the rectangle
  • Let y = length of the rectangle

Given that the width of the rectangle is decreasing at a rate of 2 cm/min:


\implies \frac{\text{d}x}{\text{d}t}=-2\; \sf cm/min

Given that the length of the rectangle is increasing at a rate of 6 cm/min:


\implies \frac{\text{d}y}{\text{d}t}=6\; \sf cm/min

Part (a)

The diagonal forms a right triangle.

Therefore, using Pythagoras Theorem:


\implies x^2+y^2=D^2

where D is the length of the diagonal.

To find the rate of change of the diagonal, take the derivative of the equation with respect to time (t):


\implies \frac{\text{d}}{\text{d}t}x^2+\frac{\text{d}}{\text{d}t}y^2=D^2\frac{\text{d}}{\text{d}t}


\implies 2x \frac{\text{d}x}{\text{d}t}+2y\frac{\text{d}y}{\text{d}t}=2D\frac{\text{d}D}{\text{d}t}


\implies x \frac{\text{d}x}{\text{d}t}+y\frac{\text{d}y}{\text{d}t}=D\frac{\text{d}D}{\text{d}t}

Given:

  • y = 9 cm
  • D = 41 cm

Use Pythagoras Theorem to calculate the width of the rectangle:


\implies x^2+y^2=D^2


\implies x^2+9^2=41^2


\implies x=√(41^2-9^2)


\implies x=40\; \sf cm

Given parameters:


  • \frac{\text{d}x}{\text{d}t}=-2\; \sf cm/min

  • \frac{\text{d}y}{\text{d}t}=6\; \sf cm/min

  • x=40\;\sf cm

  • y = 9\; \sf cm

  • D=41\; \sf cm

Substitute the given parameters into the equation:


\implies x \frac{\text{d}x}{\text{d}t}+y\frac{\text{d}y}{\text{d}t}=D\frac{\text{d}D}{\text{d}t}


\implies (40) (-2)+(9)(6)=41\frac{\text{d}D}{\text{d}t}


\implies -26=41\frac{\text{d}D}{\text{d}t}


\implies \frac{\text{d}D}{\text{d}t}=-(26)/(41)

Therefore, the length of the diagonal is decreasing at a rate of ²⁶/₄₁ cm/min.

Part (b)

Note: The angle θ has not been marked on the given diagram.

Therefore, I have used the angle BAC (please see attached diagram).

If θ is the angle BAC then to find the rate of change of the angle, find an expression for the angle using the tan ratio:


\implies \tan \theta=(x)/(y)


\implies \tan \theta=xy^(-1)

To find the rate of change of the angle, take the derivative of the equation with respect to time (t):


\implies \frac{\text{d}}{\text{d}t}\tan \theta=\frac{\text{d}}{\text{d}t}xy^(-1)


\implies \sec^2 \theta \frac{\text{d}\theta}{\text{d}t}=(1)/(y)\frac{\text{d}x}{\text{d}t}-(x)/(y^2)\frac{\text{d}y}{\text{d}t}


\implies (1)/(\cos^2 \theta) \frac{\text{d}\theta}{\text{d}t}=(1)/(y)\frac{\text{d}x}{\text{d}t}-(x)/(y^2)\frac{\text{d}y}{\text{d}t}

Given:

  • x = 40 cm
  • y = 9 cm
  • D = 41 cm

Find an expression for the cosine of angle θ using the given parameters:


\implies \cos \theta=(y)/(D)=(9)/(41)

Given parameters:


  • \frac{\text{d}x}{\text{d}t}=-2\; \sf cm/min

  • \frac{\text{d}y}{\text{d}t}=6\; \sf cm/min

  • x=40\;\sf cm

  • y = 9\; \sf cm

  • \cos \theta=(9)/(41)

Substitute the given parameters into the equation:


\implies (1)/(\cos^2 \theta) \frac{\text{d}\theta}{\text{d}t}=(1)/(y)\frac{\text{d}x}{\text{d}t}-(x)/(y^2)\frac{\text{d}y}{\text{d}t}


\implies \left((41)/(9)\right)^2 \frac{\text{d}\theta}{\text{d}t}=(1)/(9)(-2)-(40)/(9^2)(6)


\implies \left((1681)/(81)\right) \frac{\text{d}\theta}{\text{d}t}=-(2)/(9)-(80)/(27)


\implies\frac{\text{d}\theta}{\text{d}t}=-(86)/(27) \left((81)/(1681)\right)


\implies\frac{\text{d}\theta}{\text{d}t}=-(258)/(1681)\; \sf deg/min

Therefore, the angle is decreasing at a rate of ²⁵⁶/₁₆₈₁ deg/min.

Part (c)

The equation for the area of triangle ABC is:


A=(1)/(2)xy

To find the rate of change of the area, take the derivative of the equation with respect to time (t):


\implies \frac{\text{d}}{\text{d}t}A=\frac{\text{d}}{\text{d}t}(1)/(2)xy


\implies \frac{\text{dA}}{\text{d}t}=(1)/(2)y\frac{\text{d}x}{\text{d}t}+(1)/(2)x\frac{\text{d}y}{\text{d}t}

Given parameters:


  • \frac{\text{d}x}{\text{d}t}=-2\; \sf cm/min

  • \frac{\text{d}y}{\text{d}t}=6\; \sf cm/min

  • x=40\;\sf cm

  • y = 9\; \sf cm

Substitute the given parameters into the equation:


\implies \frac{\text{dA}}{\text{d}t}=(1)/(2)y\frac{\text{d}x}{\text{d}t}+(1)/(2)x\frac{\text{d}y}{\text{d}t}


\implies \frac{\text{dA}}{\text{d}t}=(1)/(2)(9)(-2)+(1)/(2)(40)(6)


\implies \frac{\text{dA}}{\text{d}t}=-9+120


\implies \frac{\text{dA}}{\text{d}t}=111\; \sf cm^2/min

Therefore, the area of the triangle is increasing at a rate of 111 cm²/min.

Please help me on a, b, and c.-example-1
User Shushana
by
2.8k points