59.9k views
0 votes
Which expression is equivalent to cos120°? ° cos240° cos300° cos420°?

2 Answers

2 votes

Answer:

Correct option is 1.

Step-by-step explanation:

We have to find the expression which is equivalent to cos 120°

Expression:
\cos 120^\circ

The given expression is equivalent to those whose value is same as
\cos 120^\circ


\cos 120^\circ= \cos (180-60)


\cos 120^\circ= -\cos 60


\cos 120^\circ= -(1)/(2)

value of cos 120° in second quadrant is negative.

Option 1 :
\cos 240^(\circ)


\cos 240^(\circ)= \cos (180+60)= -\cos 60


\cos 240^(\circ)= -(1)/(2)

Value is same i.e equivalent

Option 2 :
\cos 300^(\circ)


\cos 300^\circ= \cos (360-60)


\cos 300^\circ= \cos (2* 180- 60)


\cos 300^\circ= \cos (60)


\cos 300^\circ= (1)/(2)

Not equivalent

Option 3 :
\cos 420^\circ


\cos 420^\circ= \cos (360+60)


\cos 300^\circ= \cos (2* 180+60)


\cos 420^\circ= \cos 60


\cos 420^\circ= (1)/(2)

Not equivalent

∴ Correct option is 1.


\cos 120^\circ=\cos 240^\circ=-(1)/(2)

User Vivek Kushwaha
by
6.8k points
0 votes

Answer:

Option 1 - cos 240°

Explanation:

Given : Expression
\cos 120^\circ

To find : Which expression is equivalent to given expression ?

Solution :

The given expression is equivalent to those whose value is same as
\cos 120^\circ

Value of


\cos 120^\circ= \cos (180-60)


\cos 120^\circ= -\cos 60


\cos 120^\circ= -(1)/(2)

value of cos in second quadrant is negative.

Option 1 :
\cos 240^\circ


\cos 240^\circ= \cos (180+60)


\cos 240^\circ= -\cos 60


\cos 240^\circ= -(1)/(2)

Equivalent

Option 2 :
\cos 300^\circ


\cos 300^\circ= \cos (360-60)


\cos 300^\circ= \cos (2* 180- 60)


\cos 300^\circ= \cos (60)


\cos 300^\circ= (1)/(2)

Not equivalent

Option 3 :
\cos 420^\circ


\cos 420^\circ= \cos (360+60)


\cos 300^\circ= \cos (2* 180+60)


\cos 420^\circ= \cos 60


\cos 420^\circ= (1)/(2)

Not equivalent

Therefore, Correct option is 1.


\cos 120^\circ=\cos 240^\circ=-(1)/(2)

User Girish Vadhel
by
6.5k points