Suppose that the point A(x,y) belongs to this parabola. The defining point of the parabola is that the distance between a point F and the directrix. Suppose that the chosen point F is at (a,b). Then, the distance from A to the directrix is |b+4| while the distance from A to the focus is given by the pythagorean theorem:

.
We have that these two have to be equal. Squaring both sides we get:

.
This is the equation that describes all equations of parabolas with that directrix; you just need to choose the focus and substituting a and b will yield the equation.