220k views
4 votes
the length of a rectangle is 8 in more than its width the area of a rectangle is equal to 3 in less than three times the perimeter find the length and width of the rectangle

User Aem
by
8.6k points

1 Answer

2 votes
This is the sort of question that is easily solved graphically.

The length is 17 inches; the width is 9 inches.

_____
Let x and y represent the width and length, respectively.
y = x +8 . . . . . the length is 8 more than the width
xy = 3(2(x +y)) -3 . . . . . the area is 3 less than 3 times the perimeter*

You can use the first expression for y to substitute into the second equation to get a quadratic in x. Only the positive solution is of interest.
x(x +8) = 6(2x +8) -3
x^2 -4x -45 = 0
(x -9)(x +5) = 0

___
* This part of the problem statement is nonsensical. Area is in square inches; perimeter is in inches. You cannot compare these quantities; you can only compare their numerical values. Subtracting 3 inches from some number of square inches cannot be done.
the length of a rectangle is 8 in more than its width the area of a rectangle is equal-example-1
User C Blanchard
by
8.5k points