38.6k views
0 votes
Write the sum using summation notation, assuming the suggested pattern continues.

-1 + 2 + 5 + 8 + ... + 44

2 Answers

2 votes
The numbers increase by 3 starting at 0 use the equation for arithmetic sequence.

n
∑ 3x-1
i = 0


proper notion is shown in the picture.

Write the sum using summation notation, assuming the suggested pattern continues. -1 + 2 + 5 + 8 + ... + 44-example-1
User General Exception
by
7.7k points
5 votes

Answer:

345

Explanation:

We know that
1+2+3+...+n=(n(n+1))/(2)

Given pattern :
-1 + 2 + 5 + 8 + ... + 44

-1 + 2 + 5 + 8 + ... + 44 = \sum_{i=0}^{15} 3x-1

We can write
\sum_(i=0)^(15) 3x-1=3\sum_(i=0)^(15)x-\sum_(i=0)^(15)1

Here,
3\sum_(i=0)^(15)x=3\left ( 1+2+3+...+15 \right )

On putting n = 15 in
(15(15+1))/(2)=(15* 16)/(2)=120

So,
3\sum_(i=0)^(15)x=3(120)=360

Also,
\sum_(i=0)^(15)1=15

Therefore,


-1 + 2 + 5 + 8 + ... + 44\\=\sum_(i=0)^(15) \left ( 3x-1 \right )\\=3\sum_(i=0)^(15)x-\sum_(i=0)^(15)1\\=3\left ( 0+1+2+3+...+15 \right )-15\\=3\left [ (15\left ( 15+1 \right ))/(2) \right ]-15\\=360-15\\=345

User Mondayguy
by
7.8k points