192k views
2 votes
A square of area 32 cm2 is inscribed into a semi-circle. What is the area of the semi-circle?

User Zerologiko
by
7.7k points

2 Answers

1 vote
*incorect caculations do not read*
we have a formula for that

{r}^(2) = \frac{5 {a}^(2) }{4}
r being the radius and a being the edge of our square

a is

√(32)
so lets find r

{r}^(2) = \frac{5 * { √(32) }^(2) }{4}
after solving we reach these two answers

r = - 2 √(10) \\ r = 2 √(10)
we are looking for a radius so negetive numbers are disregarded. now that we have the radius for our semi circle we can calculate the area of our semi circle. with this formula

\frac{\pi * {r}^(2) }{2}
(just the formula for the area of a circle divided by half)

area = (\pi * 2√(10) )/(2) \\area = \pi * 20
User Tumtumtum
by
8.4k points
4 votes
------------------------------------------------------------
Find Length of the square :
------------------------------------------------------------
Given that the area of the square is 32 cm²:

Area = Length²


\text {Length =} √(32)

------------------------------------------------------------
Find Radius :
------------------------------------------------------------
Using Pythagorus Theorem to find the radius of the circle:

a² + b² = c²


( √(32))^2 + (( √(32) )/(2) )^2 = ( \text {radius} )^2


(\text {radius} )^2 = 32 + (32)/(4)


(\text {radius} )^2 = 40


\text { Radius = } √( 40 )

------------------------------------------------------------
Find Area of the semi-circle :
------------------------------------------------------------

\text {Area of the semi-circle = } (1)/(2) \pi r^2


\text {Area of the semi-circle = } (1)/(2) \pi ( √(40)) ^2


\text {Area of the semi-circle = } 20 \pi


\text {Area of the semi-circle = } 62.83 \ cm^2
User Ali Ihsan URAL
by
8.6k points