Answer:
w = 10.74
X = 13 degrees
V = 144 degrees
Explanation:
If you draw a line from V which is perpendicular to XW, this line is VY (see attachment
then sin(W) = VY/VW
=> VY = VWsin(W) = 6 x sin23 = 6 x 0.39 = 2.34
since VYW is a right triangle with VW is hypotenuse
VW^2 = VY^2 + YW^2
YW^2 = VW^2 - VY^2 = 6^2 - 2.34^2 = 36 - 5.48 = 30.52
YW = 5.52
XY = XW - YW = 16 - 5.52 = 10.48
since triangle XYV is a right triangle with XV or w is hypotenuse
w^2 = VY^2 + XY^2 = 2.34^2 + 10.48^2 = 5.48 + 109.83 = 115.31
w = 10.74
sin(X) = VY/VX = 2.34/10.74 = 0.22
X = 13 degrees
V = 180 - (X + W) = 180 - (13 + 23) = 144 degrees