151k views
1 vote
AP Calculus help #5 convergence intervals

AP Calculus help #5 convergence intervals-example-1
User Chrisbtoo
by
6.0k points

1 Answer

3 votes

The given series is geometric, so it converges if


\left|\frac2{x^2+1}\right| < 1

For all real
x, the denominator is always positive, so


\left|\frac2{x^2+1}\right| = \frac2{x^2+1} < 1 \\\\ \implies \frac{x^2+1}2 > 1 \\\\ \implies x^2+1 > 2 \\\\ \implies x^2 > 1 \\\\ \implies x>1 \text{ or } x < -1

When
x=\pm1, the series diverges:


\displaystyle \sum_(n=1)^\infty \left(\frac2{(\pm1)^2+1}\right)^n = \sum_(n=1)^\infty 1 \to \infty

so (D) is the correct answer.

User Andrew Naumovich
by
5.8k points