57.6k views
3 votes
The perimeter of a rectangle is 110 meters and the length is 25 meters longer than the width. find the dimensions of the rectangle. let x= the length and y= the width. the corresponding modeling system is {2x+2y=110x−y=25. solve the system graphically.

User Wijnand
by
8.4k points

1 Answer

6 votes
------------------------------------------------
Define x and y:
------------------------------------------------
Length = x
Width = y

------------------------------------------------
Construct the two equations:
------------------------------------------------
The perimeter is 110:
2x + 2y = 110

The Length is 25m longer than the width:
x = y + 25

------------------------------------------------
Solve x and y:
------------------------------------------------
2x + 2y = 110 ---------------- (1)
x = y + 25 ---------------------(2)

Substitute (2) into (1):

2x + 2y = 110
2( y + 25) + 2y = 110
2y + 50 + 2y = 110
4y + 50 = 110
4y = 110 - 50
4y - 60
y = 15m

------------------------------------------------
Substitute y=15 into equation 1:
------------------------------------------------
x = y + 25
x = 15 + 25
x = 40m

------------------------------------------------
Find Length and Width:
------------------------------------------------
Length = x = 40m
Width = y = 15m

------------------------------------------------
Answer: Length = 40m , Width = 15m
------------------------------------------------
User Krishna Satya
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories