136k views
4 votes
Long division
3x+1/6x^6+5x^5+2x^4-9x^3+7x^2-10x+2

User Secureboot
by
8.2k points

1 Answer

1 vote

(6 x^(6)+5x^(5)+2x^(4)-9x^(3)+7x^(2)-10x+2) / (3x+1)

We divide first number from first parenthesis with first number from second parenthesis. Then the resulting number we multiply by all numbers in second parenthesis and substract from first parenthesis.


6 x^(6)/3x = 2 x^(5) \\ \\ 6 x^(6)+5x^(5)+2x^(4)-9x^(3)+7x^(2)-10x+2 - 6 x^(6) -2 x^(5) = 3x^(5)+2x^(4)-9x^(3)+7x^(2)-10x+2\\

We repeat previous steps until we run out of numbers:

3x^(5)/3x=x^(4) \\ \\ 3x^(5)+2x^(4)-9x^(3)+7x^(2)-10x+2-3x^(5)-x^(4)= \\ \\ x^(4)-9x^(3)+7x^(2)-10x+2 \\ \\ \\ x^(4)/3x= (1)/(3) x^(3) \\ \\ x^(4)-9x^(3)+7x^(2)-10x+2-x^(4)- (1)/(3) x^(3)= \\ \\ - (28)/(3) x^(3)+7x^(2)-10x+2 \\ \\ \\ - (28)/(3) x^(3)/3x= - (28)/(9) x^(2) \\ \\ - (28)/(3) x^(3)+7x^(2)-10x+2+ (28)/(3) x^(3)+ (28)/(9) x^(2) = \\ \\ (91)/(9) x^(2)-10x+2

(91)/(9) x^(2)/3x=(91)/(27) x \\ \\ (91)/(9) x^(2)-10x+2-(91)/(9) x^(2)-(91)/(27) x= \\ \\ -(361)/(27) x+2 \\ \\ \\ -(361)/(27) x/3x=-(361)/(81) \\ \\ -(361)/(27) x+2+(361)/(27)x+(361)/(27)= \\ \\ (415)/(27)

We are left with a number that has no x inside. This is remainder.
The final solution is sum of all these solutions and remainder:

(2 x^(5)+x^(4)+(1)/(3) x^(3) - (28)/(9) x^(2) +(91)/(27) x)+(-(361)/(81) )
User Chintan Bawa
by
7.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories