132k views
3 votes
M is the midpoint of CF for the points C(4, 10) and F(8, 8). Find MF.

A. 5
B. 2 (Square root) 5
C.(Square root) 5
D. 10

User Heshy
by
8.6k points

1 Answer

1 vote
hmmm ok... we know C and F, what is M anyway?


\bf ~~~~~~~~~~~~\textit{middle point of 2 points }\\\\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &C&(~ 4 &,& 10~) % (c,d) &F&(~ 8 &,& 8~) \end{array}\qquad % coordinates of midpoint \left(\cfrac{ x_2 + x_1}{2}\quad ,\quad \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left( \cfrac{8+4}{2}~,~\cfrac{8+10}{2} \right)\implies \stackrel{M}{(6,9)}

ok, what is the length of the segment MF then?


\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\\\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &M&(~ 6 &,& 9~) % (c,d) &F&(~ 8 &,& 8~) \end{array}~~~ % distance value d = √(( x_2- x_1)^2 + ( y_2- y_1)^2) \\\\\\ MF=√((8-6)^2+(8-9)^2)\\\\\\ MF=√(2^2+(-1)^2)\implies MF=√(5)
User Wes Foster
by
7.7k points