123k views
5 votes
What is the coefficient of the x^5y^5-term in the binomial expansion of (2x -3y)10?

2 Answers

3 votes
a answer is (2x−5y) and do the math 32x5−400x4y+2000x3y2−5000x2y3+6250xy4−3125y5
User Khemraj
by
8.9k points
3 votes

Answer:

The coefficient of
x^5y^5 is (-1959552).

Explanation:

Given : Expression
(2x-3y)^(10)

To find : What is the coefficient of the term
x^5y^5 in the binomial expansion of expression ?

Solution :

The binomial expansion is
(x+y)^n=\sum ^nC_k x^(n-k) y^k

Where,
^nC_k=(n!)/((n-k)!k!)

On comparison with given expression
(2x-3y)^(10)

x=2x , y=-3y and n=10, k=0,1,.....,10.

Substituting in the formula and expand,


(2x-3y)^(10)=\sum ^(10)C_k (2x)^(10-k) (-3y)^k


(2x-3y)^(10)=^(10)C_0(2x)^(10-0) (-3y)^0+^(10)C_1(2x)^(10-1) (-3y)^1+^(10)C_2(2x)^(10-2) (-3y)^2+^(10)C_3(2x)^(10-3) (-3y)^3+^(10)C_4(2x)^(10-4) (-3y)^4+^(10)C_5(2x)^(10-5) (-3y)^5+^(10)C_6(2x)^(10-6) (-3y)^6+^(10)C_7(2x)^(10-7) (-3y)^7+^(10)C_8(2x)^(10-8) (-3y)^8+^(10)C_9(2x)^(10-9) (-3y)^9+^(10)C_(10)(2x)^(10-10) (-3y)^{10]


(2x-3y)^(10)=1024x^(10)-15360x^9y+103680x^8y^2-414720x^7y^3+1088640x^6y^4-1959552x^5y^5+2449440x^4y^6-2099520x^3y^7+1180980x^2y^8-393660xy^9+59049y^(10)

So, The coefficient of
x^5y^5 is (-1959552).

User Fearnbuster
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories