Answer:
The coefficient of
is (-1959552).
Explanation:
Given : Expression

To find : What is the coefficient of the term
in the binomial expansion of expression ?
Solution :
The binomial expansion is

Where,

On comparison with given expression

x=2x , y=-3y and n=10, k=0,1,.....,10.
Substituting in the formula and expand,

![(2x-3y)^(10)=^(10)C_0(2x)^(10-0) (-3y)^0+^(10)C_1(2x)^(10-1) (-3y)^1+^(10)C_2(2x)^(10-2) (-3y)^2+^(10)C_3(2x)^(10-3) (-3y)^3+^(10)C_4(2x)^(10-4) (-3y)^4+^(10)C_5(2x)^(10-5) (-3y)^5+^(10)C_6(2x)^(10-6) (-3y)^6+^(10)C_7(2x)^(10-7) (-3y)^7+^(10)C_8(2x)^(10-8) (-3y)^8+^(10)C_9(2x)^(10-9) (-3y)^9+^(10)C_(10)(2x)^(10-10) (-3y)^{10]](https://img.qammunity.org/2019/formulas/mathematics/middle-school/xcfgyszix5bqendp0sshgdnms1oy1vm6d5.png)

So, The coefficient of
is (-1959552).