297,673 views
31 votes
31 votes

\int\limits^(6,4,8)_(1,0,-3) {x} \, dx + y\, dy - z\, dz

User Celso Agra
by
2.5k points

1 Answer

4 votes
4 votes

Notice that
(x,y,-z) is a gradient field:


\\abla f(x,y,z) = (x,y,-z) \implies \begin{cases} f_x = x \\ f_y = y \\ f_z = -z \end{cases}

That is, there exists a scalar function
f(x,y,z) whose gradient is the given vector field. Solve for
f.


\displaystyle \int f_x \, dx = \int x \, dx \implies f(x,y,z) = \frac12 x^2 + g(y,z)


f_y = g_y = y \implies \displaystyle \int g_y \, dy = \int y \, dy \implies g(y,z) = \frac12 y^2 + h(z)


f_z = h_z = -z \implies \displaystyle \int h_z \, dz = - \int z \, dz \implies h(z) = -\frac12 z^2 + C


\implies f(x,y,z) = \frac{x^2+y^2-z^2}2 + C

By the gradient theorem, it follows that


\displaystyle \int_((1,0,-3))^((6,4,8)) x \, dx + y \, dy - z \, dz = f(6,4,8) - f(1,0,-3) = \boxed{-2}

User Ni Xiaoni
by
2.8k points