Explanation :
Capacitance of a capacitor,

Potential across the plates,
We know that the capacitance of a capacitor is given by :

We have to find the number of electrons.
since, q = ne (Charge is quantised)
n is the number of electrons.
So, ne = CV



or

So, the no. of electrons need to be on the negatively charged plate is
.
Hence, this is the required solution.