143k views
2 votes
Evaluate the series 4 sigma n=1 n+4

User Jmosesman
by
6.4k points

2 Answers

2 votes

Answer: The quick check answers

1. B 2. B 3. B 4. C 5. A

Explanation:

User Amir Mahdi Nassiri
by
5.9k points
4 votes

Answer:


\sum _(n=1)^4n+4=26

Explanation:

Given :
\sum _(n=1)^4\:n+4

We have to evaluate the sum.

Consider , the given sum
\sum _(n=1)^4\:n+4

Apply the sum rule,
\sum a_n+b_n=\sum a_n+\sum b_n

we have,


=\sum _(n=1)^4n+\sum _(n=1)^44

Consider
\sum _(n=1)^4n first,

Applying sum formula,
\sum _(k=1)^nk=(1)/(2)n\left(n+1\right)

Here, n = 4, we get,


=(1)/(2)\cdot \:4\left(4+1\right)


\sum _(n=1)^4n=10

Now consider
\sum _(n=1)^44


\mathrm{Apply\:the\:Sum\:Formula:\quad }\sum _(k=1)^n\:a\:=\:a\cdot n


=4\cdot \:4=16

Therefore,
=\sum _(n=1)^4n+\sum _(n=1)^44=10+16=26

Thus,
\sum _(n=1)^4n+4=26

User Areg Sarkissian
by
6.4k points