Answer:
a). m∠a = 62°
b). m∠b = 118°
Explanation:
a). Since, an angle inscribed in a semicircle is a right angle,
m∠ACB = 90°
By triangle sum theorem in ΔABC,
m∠CAB + m∠ACB + m∠ABC = 180°
28° + 90° + m∠ABC = 180°
118° + m∠ABC = 180°
m∠ABC = 180°- 118°
a = 62°
b). Since, quadrilateral ABCD is a cyclic quadrilateral,
m∠ADC + m∠ABC = 180°
b + a = 180°
b + 62° = 180°
b = 180° - 62°
b = 118°