Answer:
The ranges of value of k are values larger than 0 and lower than 16.
Explanation:
Suppose we have a second order polynomial in the following format:
![ax^2 + bx + c = 0, a \\eq 0](https://img.qammunity.org/2022/formulas/mathematics/college/cnwa4gskm0ypeyky9escqqd511tl4h2cu2.png)
It will have no roots if:
![\Delta = b^2 - 4ac < 0](https://img.qammunity.org/2022/formulas/mathematics/college/ss6rlkdc8oi7puuvanl1zqz6spz9cl491e.png)
In this question, we have that:
![hx^2 + hx - 4 = 0](https://img.qammunity.org/2022/formulas/mathematics/college/lmeiuqjg4d65mbn932b8jh31oi99lpc61q.png)
So, the coefficients are:
![a = h, b = h, c = -4](https://img.qammunity.org/2022/formulas/mathematics/college/aj7pzvqdzf69w6mxh1g5j5d9nyfjih77yz.png)
Then
![\Delta < 0](https://img.qammunity.org/2022/formulas/mathematics/college/gpwprpk4gsyuz79vn0li27q95e7f0cpds8.png)
![b^2 - 4ac < 0](https://img.qammunity.org/2022/formulas/mathematics/college/2pas074nm95l1ny6xpfwq8rhtakzkicqmk.png)
![h^2 - 16h < 0](https://img.qammunity.org/2022/formulas/mathematics/college/6wpe63mqbcvia7o31s3pwltzs44a9z7y33.png)
A quadratic function, with a positive(as is 1 in this inequality), will be negative between it's roots.
The roots are:
![h^2 - 16h = 0](https://img.qammunity.org/2022/formulas/mathematics/college/k77vh52tgpkpa25590n5htr3lxnlmge7qq.png)
![h(h - 16) = 0](https://img.qammunity.org/2022/formulas/mathematics/college/cirp5v4rpapwqww5n1yiqlxrsfcnb16u0z.png)
So
h = 0 or h = 16.
The ranes of value of k are values larger than 0 and lower than 16.