Answer:
Explanation:
Use of identities
- tan (x - y) = (tan x - tan y)/(tan x tan y + 1)
- 1/tan x = cot x
- tan (90 - x) = cot x
- tan (- x) = - tan x
Convert the first one above:
- tan x tan y = (tan x - tan y) / tan (x - y) - 1
Apply this to each term of the given expression to get:
- tan1°tan2° + tan2°tan3° + ... + tan88°tan89° =
- (tan1° - tan2°)/(tan-1°) - 1 + (tan2° - tan3°)/(tan-1°) - 1 + ... + (tan88° - tan89°)/(tan-1°) - 1 =
- (tan1° - tan2° + tan2° - tan3° + ... + tan88° - tan89°)/(tan-1°) - 88 =
- (tan1° - tan89°)/(tan-1°) - 88 =
- tan1°/ (tan-1°) - tan89°/tan-1° - 88 =
- - 1 - cot1*(- cot1°) - 88 =
- cot² 1° - 89
The value of n is 89.