152,409 views
11 votes
11 votes
Solve the equation.

3x^2 + 12 = 0

User Zin Yackvaa
by
3.3k points

2 Answers

14 votes
14 votes


\quad \huge \quad \quad \boxed{ \tt \:Answer }


\qquad \tt \rightarrow \:x = 2i

____________________________________


\large \tt Solution \: :


\qquad\displaystyle \tt \rightarrow \: 3 {x}^(2) + 12 = 0


\qquad\displaystyle \tt \rightarrow \: 3{x}^(2) = - 12


\qquad\displaystyle \tt \rightarrow \: {x}^(2) = - (12)/(3)


\qquad\displaystyle \tt \rightarrow \: x {}^(2) = - 4


\qquad\displaystyle \tt \rightarrow \: x = √( - 4)


\qquad\displaystyle \tt \rightarrow \: x = √( (- 1)(4))


\qquad\displaystyle \tt \rightarrow \: x = √( - 1) \sdot √(4)


\qquad\displaystyle \tt \rightarrow \: x = i \sdot2


\qquad\displaystyle \tt \rightarrow \: x = 2i

[ i represents iota, i² = -1, (complex number) ]

Answered by : ❝ AǫᴜᴀWɪᴢ ❞

User Jurudocs
by
2.9k points
19 votes
19 votes

Answer:


x=2i

Explanation:

Given equation:


3x^2+12=0

Factor 3 from the left side of the equation:


\implies 3(x^2+4)=0

Divide both sides of the equation by 3:


\implies(3(x^2+4))/(3)=(0)/(3)


\implies x^2+4=0

Subtract 4 from both sides:


\implies x^2+4-4=0-4


\implies x^2=-4

Square root both sides:


\implies √(x^2)=√(-4)


\implies x^2=√(-4)

Rewrite -4 as 2² · -1:


\implies x=√(2^2 \cdot-1)


\textsf{Apply radical rule} \quad √(ab)=√(a)√(b):


\implies x=√(2^2)√(-1)


\textsf{Apply radical rule} \quad √(a^2)=a, \quad a \geq 0:


\implies x=2√(-1)


\textsf{Since $√(-1)=i$}


\implies x=2i

Imaginary numbers

Since there is no real number that squares to produce -1, the number
√(-1) is called an imaginary number, and is represented using the letter i.

An imaginary number is written in the form
bi, where
b \in \mathbb{R}.

User Alebon
by
3.1k points