137k views
0 votes
The length of a rectangle is 4 cm less than twice the width. express as an integer the maximum width of the rectangle when the perimeter is less than 78 cm.

User Bbb
by
7.2k points

2 Answers

6 votes

Final answer:

The maximum width of the rectangle when the perimeter is less than 78 cm is 14 cm.

Step-by-step explanation:

To express the maximum width of the rectangle, we need to set up an inequality based on the given information. Let's assume the width of the rectangle is 'w' cm.

The length of the rectangle is 4 cm less than twice the width, so the length would be (2w - 4) cm.

The perimeter of a rectangle is given by the formula: P = 2(length + width).

We are told that the perimeter is less than 78 cm, so we can set up the inequality: 2((2w - 4) + w) < 78.

Simplifying the inequality, we get: 6w - 8 < 78.

Adding 8 to both sides gives us: 6w < 86. Dividing both sides by 6, we find: w < 14.33.

Since we are looking for an integer value, the maximum width of the rectangle when the perimeter is less than 78 cm is 14 cm.

User TheMisir
by
7.0k points
6 votes
------------------------------------------------------------------
Given Information
------------------------------------------------------------------
Length is 4cm less than twice the width
Perimeter is less than 79 cm

------------------------------------------------------------------
Define the length and width
------------------------------------------------------------------
Let the width be x
width = x
length = 2x - 4

------------------------------------------------------------------
Formula
------------------------------------------------------------------
Perimeter = 2(Length + Width)

------------------------------------------------------------------
Apply formula and solve for x
------------------------------------------------------------------
2 (2x - 4 + x) < 78

------------------------------------------------------------------
Combine like terms in the bracket
------------------------------------------------------------------
2 (x - 4) < 78

------------------------------------------------------------------
Remove the bracket
------------------------------------------------------------------
2x - 8 < 78

------------------------------------------------------------------
Add 8 on both sides
------------------------------------------------------------------
2x < 78 + 8
2x < 86

------------------------------------------------------------------
Divide by 2 through
------------------------------------------------------------------
2x < 86
x < 89 ÷ 2
x < 45.5

------------------------------------------------------------------
Identify the bigger integer that is smaller than 45.5
------------------------------------------------------------------
max integer for x = 45

------------------------------------------------------------------
Answer: Width = 45cm
------------------------------------------------------------------

User Davew
by
7.9k points