105k views
1 vote
What is the projection of (4,4) onto (3,1)?

User Haakonkas
by
7.5k points

2 Answers

4 votes

Answer:

Proy v U = (4.8, 1.6)

Explanation:

a p e x

User CoreSOLO
by
8.4k points
3 votes
Let's define the vectors:
U = (4.4)
V = (3.1)
The projection of U into V is proportional to V
The way to calculate it is the following:
Proy v U = [(U.V) / | V | ^ 2] V
Where U.V is the point product of the vectors, | V | ^ 2 is the magnitude of the vector V squared and all that operation by V which is the vector.
We have then:
U.V Product:
U.V = (4,4) * (3,1)
U.V = 4 * 3 + 4 * 1
U.V = 12 + 4
U.V = 16
Magnitude of vector V:
lVl = root ((3) ^ 2 + (1) ^ 2)
lVl = root (9 + 1)
lVl = root (10)
Substituting in the formula we have:
Proy v U = [(16) / (root (10)) ^ 2] (3, 1)
Proy v U = [16/10] (3, 1)
Proy v U = [1.6] (3, 1)
Proy v U = [1.6] (3, 1)
Proy v U = (4.8, 1.6)

Answer:
the projection of (4,4) onto (3,1) is:
Proy v U = (4.8, 1.6)
User Thomas Cook
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories