93.6k views
1 vote
Find the exact values of the six trigonometric functions of given the point (-4, 7) on the terminal side of in standard position.

1 Answer

1 vote

\bf (\stackrel{a}{-4}~,~\stackrel{b}{7})\impliedby \textit{let's find the \underline{hypotenuse}} \\\\\\ \textit{using the pythagorean theorem}\\\\ c^2=a^2+b^2\implies c=√(a^2+b^2) \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ c=√((-4)^2+7^2)\implies c=√(65)

keeping in mind that, even though the square root would give us two roots, the positive and negative ones, the hypotenuse is however only a radius distance, and therefore is never negative.


\bf sin(\theta)=\cfrac{opposite}{hypotenuse} \qquad\qquad cos(\theta)=\cfrac{adjacent}{hypotenuse} \\\\\\ % tangent tan(\theta)=\cfrac{opposite}{adjacent} \qquad \qquad % cotangent cot(\theta)=\cfrac{adjacent}{opposite} \\\\\\ % cosecant csc(\theta)=\cfrac{hypotenuse}{opposite} \qquad \qquad % secant sec(\theta)=\cfrac{hypotenuse}{adjacent}\\\\ -------------------------------


\bf sin(\theta )=\cfrac{7}{√(65)}\quad \stackrel{rationalized}{\implies }\quad\cfrac{7√(65)}{65} \\\\\\ cos(\theta )=\cfrac{-4}{√(65)}\quad \stackrel{rationalized}{\implies }\quad \cfrac{-4√(65)}{65} \\\\\\ tan(\theta )=-\cfrac{7}{4}\qquad\qquad \qquad cot(\theta )=-\cfrac{4}{7} \\\\\\ csc(\theta )=\cfrac{√(65)}{7}\qquad\qquad \qquad sec(\theta )=-\cfrac{√(65)}{4}
User Jay Nanavaty
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories