177k views
5 votes
What is the equation of the function y=3/x translated 4 units to the right and 5 units down

2 Answers

2 votes

The answer is
y=(3)/(x-4) -5

User Ishwor Kafley
by
7.8k points
7 votes

\bf ~~~~~~~~~~~~\textit{function transformations} \\\\\\ % templates f(x)= A( Bx+ C)+ D \\\\ ~~~~y= A( Bx+ C)+ D \\\\ f(x)= A√( Bx+ C)+ D \\\\ f(x)= A(\mathbb{R})^( Bx+ C)+ D \\\\ f(x)= A sin\left( B x+ C \right)+ D \\\\ --------------------


\bf \bullet \textit{ stretches or shrinks horizontally by } A\cdot B\\\\ \bullet \textit{ flips it upside-down if } A\textit{ is negative}\\ ~~~~~~\textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if } B\textit{ is negative}


\bf ~~~~~~\textit{reflection over the y-axis} \\\\ \bullet \textit{ horizontal shift by }( C)/( B)\\ ~~~~~~if\ ( C)/( B)\textit{ is negative, to the right}\\\\ ~~~~~~if\ ( C)/( B)\textit{ is positive, to the left}\\\\ \bullet \textit{ vertical shift by } D\\ ~~~~~~if\ D\textit{ is negative, downwards}\\\\ ~~~~~~if\ D\textit{ is positive, upwards}\\\\ \bullet \textit{ period of }(2\pi )/( B)

now, with that template in mind, let's check this one


\bf y=\cfrac{3}{x}\implies y=\stackrel{A}{1}\left( \cfrac{3}{\stackrel{B}{1}x+\stackrel{C}{0}}+\stackrel{D}{0} \right) \\\\\\ \textit{4 units to the right}\qquad C=-4,\qquad \textit{5 units down}\qquad D=-5 \\\\\\ y=\stackrel{A}{1}\left( \cfrac{3}{\stackrel{B}{1}x+\stackrel{C}{(-4)}}+\stackrel{D}{(-5)} \right)\implies y-\cfrac{3}{x-4}-5
User Christopher Bull
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories