2.0k views
4 votes
Rotational exponents
simplify

\sqrt[5]{128 {a}^(8) } {b}^(10)

User IT Goldman
by
8.4k points

2 Answers

1 vote

\bf \sqrt[5]{128a^8}b^(10)\implies b^(10)\sqrt[5]{128a^8}~~ \begin{cases} 128=2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\\ \qquad 2^7\\ \qquad 2^(2+5)\\ \qquad 2^2 \cdot 2^5\\ a^8=a^(3+5)\\ \qquad a^3\cdot a^5 \end{cases} \\\\\\ b^(10)\sqrt[5]{2^2\cdot 2^5\cdot a^3\cdot a^5}\implies b^(10)(2)(a)\sqrt[5]{2^2a^3}\implies 2ab^(10)\sqrt[5]{4a^3}
User Yazan Mehrez
by
7.5k points
2 votes
Hi!

If you were to simplify this expression you would get
2a b^(10) \sqrt[5]{4 a^(3) }
User Winhowes
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories