Answer:
Option D is correct
Explanation:
Given Equations of Circles:
Circle 1 -

Circle 2 -

Both circles passes through origin.
To find: Values of

Coordinates of origin = ( 0 , 0 )
Circles passes through origin means x = 0 & y = 0 must satisfy the equation of circles.
So, Substituting x = 0 & y = 0 in Eqn of Circle 1
we get






Now, Substituting x = 0 & y = 0 in Eqn of Circle 2
we get






Therefore, Option D is correct .i.e.,
