170k views
0 votes
G let x be an exponentially distributed random variable with parameter λ = 1 / 2 . determine the probability distribution function of the random variable y = x 2 . what kind of distribution does y have?

User Tim Hunt
by
8.3k points

1 Answer

2 votes

X has CDF


F_X(x)=\mathbb P(X\le x)=\begin{cases}1-e^(-\lambda x/2)&\text{for }x\ge0\\0&\text{otherwise}\end{cases}

The CDF of
Y is then


F_Y(y)=\mathbb P(Y\le y)=\mathbb P(X^2\le y)=\mathbb P(X\le\sqrt y)=F_X(\sqrt y)

\implies F_Y(y)=\begin{cases}1-e^(-\lambda\sqrt y/2)&\text{for }y\ge0\\0&\text{otherwise}\end{cases}

\implies F_Y(y)=\begin{cases}1-e^{-(y/(4/\lambda^2))^(1/2)}&\text{for }y\ge0\\0&\text{otherwise}\end{cases}

which is the CDF of a Weibull distribution with shape parameter
\frac4{\lambda^2} and scale parameter
\frac12.
User Preet Sangha
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories