29.8k views
1 vote
Find tan (a+B), given cot a= -3/4 , csc B= 25/24 , 90° < a < 180° , 90°< B < 180°

1 Answer

9 votes

Answer:

tan(a + B) =
(4)/(3)

Explanation:

cot(a) =
-(3)/(4)

Therefore, tan(a) =
-(4)/(3)

cosec(B) =
(25)/(24)

Since, 1 + cot²(B) = cosec²(B)

1 + cot²(B) =
((25)/(24))^(2)

cot²(B) =
(625)/(576)-1

cot(B) =
\sqrt{(49)/(576)}

=
\pm (7)/(24)

tan(B) =
\pm (24)/(7)

Since, tan and cot of an angle is negative in II quadrant,

Therefore, tan(B) =
-(24)/(7)

Since, tan(a + B) =
\frac{\text{tan}(a)+\text{tan}(B)}{1-\text{tan(a)tan(B)}}

By substituting the values in the identity,

tan(a + B) =
(-(4)/(3)-(24)/(7))/(1-(-(4)/(3))(-(24)/(7)))

=
(-(28)/(21)-(72)/(21))/(1-((32)/(7)))

=
(-(100)/(21) )/((7-32)/(7) )

=
(100)/(21)* (7)/(25)

=
(4)/(3)

Therefore, tan(a + B) =
(4)/(3) is the answer.

User Niitaku
by
4.9k points