32.7k views
2 votes
1,600 principal earning 7%, compounded annually, after 33 years

1 Answer

4 votes

\bf ~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+(r)/(n)\right)^(nt) \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\to &\$1600\\ r=rate\to 7\%\to (7)/(100)\to &0.07\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{annually, thus once} \end{array}\to &1\\ t=years\to &33 \end{cases} \\\\\\ A=1600\left(1+(0.07)/(1)\right)^(1\cdot 33)\implies A=1600(1.07)^(33)
User Timkado
by
6.1k points