36.3k views
2 votes
Let x be a random variable with pareto distribution with parameter α . determine the probability distribution function of the random variable y = ln ⁡ ( x ) . what kind of distribution does y have?

User Trind
by
8.3k points

1 Answer

4 votes
I'm assuming the support of
X is
x\ge1, judging by the usage of
Y=\ln X. The CDF of
X is


F_X(x)=\mathbb P(X\le x)=\begin{cases}1-\frac1{x^\alpha}&\text{for }x\ge1\\\\0&\text{otherwise}\end{cases}

and so


F_Y(y)=\mathbb P(Y\le y)=\mathbb P(\ln X\le y)=\mathbb P(X\le e^y)=F_X(e^y)

\implies F_Y(y)=\begin{cases}1-e^(-\alpha y)&\text{for }y\ge0\\\\0&\text{otherwise}\end{cases}

\implies f_Y(y)=(\mathrm d)/(\mathrm dy)F_Y(y)=\begin{cases}\alpha e^(-\alpha y)&\text{for }y>0\\0&\text{otherwise}\end{cases}

which is the PDF of an exponential distribution with rate parameter
\alpha.
User Zoom
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.