36.3k views
2 votes
Let x be a random variable with pareto distribution with parameter α . determine the probability distribution function of the random variable y = ln ⁡ ( x ) . what kind of distribution does y have?

User Trind
by
6.3k points

1 Answer

4 votes
I'm assuming the support of
X is
x\ge1, judging by the usage of
Y=\ln X. The CDF of
X is


F_X(x)=\mathbb P(X\le x)=\begin{cases}1-\frac1{x^\alpha}&\text{for }x\ge1\\\\0&\text{otherwise}\end{cases}

and so


F_Y(y)=\mathbb P(Y\le y)=\mathbb P(\ln X\le y)=\mathbb P(X\le e^y)=F_X(e^y)

\implies F_Y(y)=\begin{cases}1-e^(-\alpha y)&\text{for }y\ge0\\\\0&\text{otherwise}\end{cases}

\implies f_Y(y)=(\mathrm d)/(\mathrm dy)F_Y(y)=\begin{cases}\alpha e^(-\alpha y)&\text{for }y>0\\0&\text{otherwise}\end{cases}

which is the PDF of an exponential distribution with rate parameter
\alpha.
User Zoom
by
5.9k points