228k views
0 votes
What are the values of x and y?

a) x= 136/15, y= 17/15
b) x= 64/15, y= 17/15
c) x= 8/15, y= 136/15
d) x= 64/15, y= 136/15

What are the values of x and y? a) x= 136/15, y= 17/15 b) x= 64/15, y= 17/15 c) x-example-1
User TallTed
by
8.4k points

1 Answer

3 votes
In the given figure, we have two right angled triangles:
1) Triangle ABC
2) Triangle CDB

Using pythagorean theorem, we can write equations for both triangles.

For triangle ABC:


(15+x)^(2)= 17^(2)+ y^(2)

For triangle CDB:


y^(2)= 8^(2)+ x^(2)

Using the value of y² in the first equation, we get:


(15+x)^(2)= 289 + 64 + x^(2) \\ \\ 225+30x+ x^(2) =353 + x^(2) \\ \\ 30x=128 \\ \\ x= (128)/(30) \\ \\ x= (64)/(15)


y^(2)= 8^(2)+ x^(2) \\ \\ y^(2)=64+ ( (64)/(15) )^(2) \\ \\ y^(2)= (18496)/(25) \\ \\ y= (136)/(15)

Thus the d option gives the correct values of x and y

User Sanoob
by
8.5k points

No related questions found