228k views
3 votes
Solve the equation 2cos^2x = sin2x , giving your answer in terms of π. 0

User Sid Go
by
8.0k points

2 Answers

5 votes

Given is
2*cos^(2) (x)=sin(2x)

We can use following formulas to solve this problem :-

1.
(sin\;\theta)/(cos\;\theta) = tan\;\theta

2. sin(2∅) = 2·sin(∅)·cos(∅)


Solving the given equation :-


2*cos^(2) (x)=sin(2x) \\\\2*cos^(2) (x)=2*sin(x)*cos(x) \\\\2*cos^(2) (x)-2*sin(x)*cos(x)=0 \\\\2*cos^(2)(x)*(1-(sin(x))/(cos(x))) =0 \\\\2*cos^(2)(x)*(1-tan(x)) =0 \\\\cos^(2)(x) = 0 \;or\; (1-tan(x)) =0 \\\\cos(x) = 0 \;or\; tan(x) =1 \\\\x = cos^(-1)(0) \;or\; x=tan^(-1)(1) \\\\x=(\pi)/(2) \;or\; x=(\pi)/(4)

Hence, final answer is
x=(\pi)/(2) \;or\; x=(\pi)/(4).

User Blastfurnace
by
8.5k points
1 vote
2cos^2x = sin2x 2cos^2x = 2sin x cos x (2sin x cos x) / (2cos^2x) = 1 sin x / cos x = 1 tan x = 1 x = π/4
User ThorstenC
by
8.2k points