220k views
5 votes
How to solve: \frac{1}{y^{\frac{2}{5}}} ?

User Foxanna
by
8.4k points

1 Answer

7 votes
well, there's nothing to solve per se, however assuming you meant "rationalizing the denominator", which means namely to "get rid of that pesky radical at the bottom", then


\bf a^{( n)/( m)} \implies \sqrt[ m]{a^ n} \qquad \qquad \sqrt[ m]{a^ n}\implies a^{( n)/( m)}\\\\ -------------------------------


\bf \cfrac{1}{y^{(2)/(5)}}\implies \cfrac{1}{\sqrt[5]{y^2}} \quad \stackrel{rationalizing~it}{\implies }\quad \cfrac{1}{\sqrt[5]{y^2}}\cdot \cfrac{\sqrt[5]{y^3}}{\sqrt[5]{y^3}}\implies \cfrac{\sqrt[5]{y^3}}{\sqrt[5]{y^2}\cdot \sqrt[5]{y^3}} \\\\\\ \cfrac{\sqrt[5]{y^3}}{\sqrt[5]{y^2y^3}}\implies \cfrac{\sqrt[5]{y^3}}{\sqrt[5]{y^(2+3)}}\implies \cfrac{\sqrt[5]{y^3}}{\sqrt[5]{y^5}}\implies \cfrac{\sqrt[5]{y^3}}{y}
User Rob Lowe
by
7.6k points

No related questions found