Answer:
95 feet
Explanation:
Refer the attached figure.
A surveyor moves 120 feet away from the base of the pole i.e. BC = 120 feet.
BC= ED = 120 feet (refer the figure)
Height of transit i.e. DC = 8 feet
DC = EB = 8 feet (refer the figure)
The angle of elevation to the top of the pole to be 36° i.e. ∠ADE = 36°
Height of pole = AE+EB
To find AE use trigonometric ratio





Height of pole = AE+EB = 87.12+8 = 95.12 feet≈95 feet
Hence the height of pole is 95 feet