91.1k views
5 votes
Helppp!!! Will fan and Medal!!!

suppose n is an integer. select all statements below that are true:

n^2 + n is always an even integer
n^2 + n is always an even integer when n is even
n^2 + n is always an even integer when n is odd
n^2 + n is never an even integer when n is odd
n^2 + n is never an even integer
n^2 + n is sometimes an even integer

User Alexisdm
by
8.7k points

1 Answer

5 votes
Let n = 0, 1, 2, 3, 4, 5, 6, 7....
When n = 0 then 0^2 + 0 = 0. n = 1 we have 1^2 + 1 = 2. And when n = 2 we have 2^2 + 2 = 6. When n= 3 we have 3^2 + 3 = 12. When n = 4 we have 4^2 + 4 = 20. When n = 5 we have 5^2 + 5 = 30. When n = 6 = 6^2 + 6 = 42. And finally when n = 7 we have 7^2 + 7 = 56. So at n = 1, 2, ...7, ... Our values are = 2, 6, 12, 20, 30, 42, and 56. It is obvious that n is always an even number. Hence n^2 + n is always an even integer for all positive integers.
When n = -1 we have (-1)^2 - 1 = 0 when n = -2 we have (-2)^2 -2 = 2. When n = -3 we have (-3)^2 - 3 = 6. When n = -4 we have (-4)^2 - 4 = 16 - 4 =12. When n =-5 we have (-5)^2 -5 = 20. When n = -6 we have (-6)^2 - 6 = 30. When n = (-7)^2 - 7 = 42. Hence n^2 + n is always even for all integers
User Bensonius
by
9.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories