104k views
3 votes
A flat piece of glass covers the top of a vertical cylinder that is completely filled with water. if a ray of light traveling in the glass is incident on the interface with the water at an angle of θa = 36.0 ∘ , the ray refracted into the water makes an angle of 49.4 ∘ with the normal to the interface. part a what is the smallest value of the incident angle θa for which none of the ray refracts into the water?

User Tom Wuyts
by
5.6k points

2 Answers

3 votes

Final answer:

The critical angle is the smallest incident angle at which light is no longer refracted into water, but instead is totally internally reflected. This can be calculated using Snell's law, where the sine of the critical angle is the ratio of the indices of refraction for water and glass.

Step-by-step explanation:

The smallest value of the incident angle θa for which none of the ray refracts into water, and instead exhibits total internal reflection, is known as the critical angle. To find this critical angle, we can apply Snell's law (n1 × sin(θa) = n2 × sin(θb)), where θa is the incident angle and θb is the refracted angle when θb is 90°, the angle of refraction is at the maximum and therefore indicates the critical angle condition. Using the indices of refraction for glass (n1) and water (n2), we can solve for the critical angle which will indicate the threshold above which light will not refract into water but instead be totally internally reflected.

User Ali Tou
by
5.6k points
6 votes
if the object, ends up with a positive charge, then it is missing electrons. if it is missing electrons, then it must have been removed form the object during the rubbing process.
User Kunemata
by
6.4k points