108k views
4 votes
Describe the graph of y={1/(2x-10)}-3 compared to the graph of y=1/x

User Ashleedawg
by
7.9k points

1 Answer

2 votes

\bf ~~~~~~~~~~~~\textit{function transformations} \\\\\\ % templates f(x)= A( Bx+ C)+ D \\\\ ~~~~y= A( Bx+ C)+ D \\\\ f(x)= A√( Bx+ C)+ D \\\\ f(x)= A(\mathbb{R})^( Bx+ C)+ D \\\\ f(x)= A sin\left( B x+ C \right)+ D \\\\ --------------------


\bf \bullet \textit{ stretches or shrinks horizontally by } A\cdot B\\\\ \bullet \textit{ flips it upside-down if } A\textit{ is negative}\\ ~~~~~~\textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if } B\textit{ is negative}


\bf ~~~~~~\textit{reflection over the y-axis} \\\\ \bullet \textit{ horizontal shift by }( C)/( B)\\ ~~~~~~if\ ( C)/( B)\textit{ is negative, to the right}\\\\ ~~~~~~if\ ( C)/( B)\textit{ is positive, to the left}\\\\ \bullet \textit{ vertical shift by } D\\ ~~~~~~if\ D\textit{ is negative, downwards}\\\\ ~~~~~~if\ D\textit{ is positive, upwards}\\\\ \bullet \textit{ period of }(2\pi )/( B)

with that template in mind, let's check these two


\bf \stackrel{parent}{y=\cfrac{1}{x}}\qquad \qquad\qquad \qquad \stackrel{transformed}{y=\cfrac{1}{\stackrel{B}{2}x\stackrel{C}{-10}}\stackrel{D}{-3}}\\\\ -------------------------------\\\\ B=2\qquad \textit{shrinks horizontally by }(1)/(2) \\\\\\ C=-10\qquad \cfrac{C}{B}=\cfrac{-10}{2}\implies -5\qquad \textit{horizontally right-shifted by }5 \\\\\\ D=-3\qquad \textit{vertically down-shifted by }3
User Noko
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories