108k views
4 votes
Describe the graph of y={1/(2x-10)}-3 compared to the graph of y=1/x

User Ashleedawg
by
7.9k points

1 Answer

2 votes

\bf ~~~~~~~~~~~~\textit{function transformations} \\\\\\ % templates f(x)= A( Bx+ C)+ D \\\\ ~~~~y= A( Bx+ C)+ D \\\\ f(x)= A√( Bx+ C)+ D \\\\ f(x)= A(\mathbb{R})^( Bx+ C)+ D \\\\ f(x)= A sin\left( B x+ C \right)+ D \\\\ --------------------


\bf \bullet \textit{ stretches or shrinks horizontally by } A\cdot B\\\\ \bullet \textit{ flips it upside-down if } A\textit{ is negative}\\ ~~~~~~\textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if } B\textit{ is negative}


\bf ~~~~~~\textit{reflection over the y-axis} \\\\ \bullet \textit{ horizontal shift by }( C)/( B)\\ ~~~~~~if\ ( C)/( B)\textit{ is negative, to the right}\\\\ ~~~~~~if\ ( C)/( B)\textit{ is positive, to the left}\\\\ \bullet \textit{ vertical shift by } D\\ ~~~~~~if\ D\textit{ is negative, downwards}\\\\ ~~~~~~if\ D\textit{ is positive, upwards}\\\\ \bullet \textit{ period of }(2\pi )/( B)

with that template in mind, let's check these two


\bf \stackrel{parent}{y=\cfrac{1}{x}}\qquad \qquad\qquad \qquad \stackrel{transformed}{y=\cfrac{1}{\stackrel{B}{2}x\stackrel{C}{-10}}\stackrel{D}{-3}}\\\\ -------------------------------\\\\ B=2\qquad \textit{shrinks horizontally by }(1)/(2) \\\\\\ C=-10\qquad \cfrac{C}{B}=\cfrac{-10}{2}\implies -5\qquad \textit{horizontally right-shifted by }5 \\\\\\ D=-3\qquad \textit{vertically down-shifted by }3
User Noko
by
7.9k points