We will use the right Riemann sum. We can break this integral in two parts.

We take the interval and we divide it n times:

The area of the i-th rectangle in the right Riemann sum is:

For the first part of our integral we have:

For the second part we have:

We can now put it all together:
![\sum_(i=1)^(i=n) [(\Delta x)^4 i^3-6(\Delta x)^2i]\\\sum_(i=1)^(i=n)[ ((3)/(n))^4 i^3-6((3)/(n))^2i]\\ \sum_(i=1)^(i=n)((3)/(n))^2i[((3)/(n))^2 i^2-6]](https://img.qammunity.org/2019/formulas/mathematics/high-school/znr9uneby7rc7ibdz8s0h3ly2z6h1stso9.png)
We can also write n-th partial sum:
