74.0k views
3 votes
Find a linear differential operator that annihilates the given function. (use d for the differential operator.) e−x + 8xex − x2ex

User Matiasf
by
7.9k points

1 Answer

2 votes
Answer:
(d - 1)^3(d + 1)

Step-by-step explanation:


Let


f(x) = e^(-x) + 8xe^x - x^2 e^x.

d^n (f(x)) = nth derivative of f

Note that


(d + 1) (e^(-x)) = d (e^(-x)) + e^(-x) = -e^(-x) + e^(-x) = 0 \\ \boxed{\Rightarrow (d + 1)e^(-x) = 0}

So, (d + 1) annihilates
e^(-x).

Note that


(d + 1) (8x e^x - x^2 e^x) = d(8x e^x - x^2 e^x) + (8x e^x - x^2 e^x) \\ = (8e^x + 8x e^x - 2x e^x - x^2 e^x) + (8x e^x - x^2 e^x) \\ \boxed{(d + 1) (8x e^x - x^2 e^x) = 8e^x + 14x e^x - x^2 e^x}

Let
g(x) = 8e^x + 14x e^x - x^2 e^x

For any real number
\alpha and positive integer n,


(d - \alpha)^n (c_1 e^(\alpha x) + c_2 xe^(\alpha x) + c_3 x^2 e^(\alpha x) + ... + c_n x^(n - 1) e^(\alpha x)) = 0 (1)

So, for g(x),
\alpha = 1, n = 3. Thus, using equation (1),


(d - 1)^3 (8e^x + 14x e^x - x^2 e^x) = 0 (2)

Since,
8e^x + 14x e^x - x^2 e^x = (d + 1) (8x e^x - x^2 e^x) ,


(d - 1)^3 ((d + 1) (8x e^x - x^2 e^x)) = (d - 1)^3 (8e^x + 14x e^x - x^2 e^x) = 0

Moreover, since
(d + 1) (e^(-x)) = 0


(d - 1)^3(d + 1) (e^(-x)) = (d - 1)^3 (0)

\\ \boxed{(d - 1)^3(d + 1) (e^(-x)) = 0 } (3)

Hence based on equations (2) and (3),


(d - 1)^3(d + 1) (e^(-x) + 8xe^x - x^2e^x) \\ = (d - 1)^3(d + 1)(e^(-x)) + (d - 1)^3(d + 1)(8xe^x - x^2e^x) \\ = 0 + 0 \\ \boxed{(d - 1)^3(d + 1) (e^(-x) + 8xe^x - x^2e^x) = 0}

Therefore, the linear operator
(d - 1)^3(d + 1) annihilates
e^(-x) + 8xe^x - x^2e^x.



User Josh Matthews
by
6.9k points