136k views
25 votes
True or False.

If

F(x) = ∫ -23x sin(t) dt

then the second fundamental theorem of calculus can be used to evaluate F '(x) as follows

F '(x) = sin (3x)

1 Answer

6 votes

Answer:

False.

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Integration

  • Integrals
  • Definite Integrals
  • Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 2]:
\displaystyle (d)/(dx)[\int\limits^x_a {f(t)} \, dt] = f(x)

Explanation:

Step 1: Define

Identify


\displaystyle F(x) = \int\limits^(3x)_(-2) {sin(t)} \, dt

Step 2: Differentiate

  1. Chain Rule:
    \displaystyle F'(x) = (d)/(dx)[\int\limits^(3x)_(-2) {sin(t)} \, dt] \cdot (d)/(dx)[3x]
  2. Rewrite [Derivative Property - Multiplied Constant]:
    \displaystyle F'(x) = (d)/(dx)[\int\limits^(3x)_(-2) {sin(t)} \, dt] \cdot 3(d)/(dx)[x]
  3. Basic Power Rule:
    \displaystyle F'(x) = (d)/(dx)[\int\limits^(3x)_(-2) {sin(t)} \, dt] \cdot 3x^(1 - 1)
  4. Simplify:
    \displaystyle F'(x) = 3(d)/(dx)[\int\limits^(3x)_(-2) {sin(t)} \, dt]
  5. Integration Rule [Fundamental Theorem of Calculus 2]:
    \displaystyle F'(x) = 3sin(3x)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

User Jeff Fritz
by
4.6k points