136k views
25 votes
True or False.

If

F(x) = ∫ -23x sin(t) dt

then the second fundamental theorem of calculus can be used to evaluate F '(x) as follows

F '(x) = sin (3x)

1 Answer

6 votes

Answer:

False.

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Integration

  • Integrals
  • Definite Integrals
  • Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 2]:
\displaystyle (d)/(dx)[\int\limits^x_a {f(t)} \, dt] = f(x)

Explanation:

Step 1: Define

Identify


\displaystyle F(x) = \int\limits^(3x)_(-2) {sin(t)} \, dt

Step 2: Differentiate

  1. Chain Rule:
    \displaystyle F'(x) = (d)/(dx)[\int\limits^(3x)_(-2) {sin(t)} \, dt] \cdot (d)/(dx)[3x]
  2. Rewrite [Derivative Property - Multiplied Constant]:
    \displaystyle F'(x) = (d)/(dx)[\int\limits^(3x)_(-2) {sin(t)} \, dt] \cdot 3(d)/(dx)[x]
  3. Basic Power Rule:
    \displaystyle F'(x) = (d)/(dx)[\int\limits^(3x)_(-2) {sin(t)} \, dt] \cdot 3x^(1 - 1)
  4. Simplify:
    \displaystyle F'(x) = 3(d)/(dx)[\int\limits^(3x)_(-2) {sin(t)} \, dt]
  5. Integration Rule [Fundamental Theorem of Calculus 2]:
    \displaystyle F'(x) = 3sin(3x)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

User Jeff Fritz
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories