92.8k views
0 votes
Describe the transformation of the following function y=tan(2x-pi)

1 Answer

1 vote

\bf ~~~~~~~~~~~~\textit{function transformations} \\\\\\ f(x)=Asin(Bx+C)+D \\\\ f(x)=Acos(Bx+C)+D\\\\ f(x)=Atan(Bx+C)+D \\\\ -------------------\\\\ \bullet \textit{ stretches or shrinks}\\ ~~~~~~\textit{horizontally by amplitude } |A|\cdot B\\\\ \bullet \textit{ flips it upside-down if }A\textit{ is negative}\\ ~~~~~~\textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if }B\textit{ is negative}\\ ~~~~~~\textit{reflection over the y-axis}


\bf \bullet \textit{ horizontal shift by }(C)/(B)\\ ~~~~~~if\ (C)/(B)\textit{ is negative, to the right}\\\\ ~~~~~~if\ (C)/(B)\textit{ is positive, to the left}\\\\ \bullet \textit{vertical shift by }D\\ ~~~~~~if\ D\textit{ is negative, downwards}\\\\ ~~~~~~if\ D\textit{ is positive, upwards}\\\\ \bullet \textit{function period or frequency}\\ ~~~~~~(2\pi )/(B)\ for\ cos(\theta),\ sin(\theta),\ sec(\theta),\ csc(\theta)\\\\ ~~~~~~(\pi )/(B)\ for\ tan(\theta),\ cot(\theta)

with that template in mind, let's check this one,


\bf y=tan(\stackrel{B}{2}x\stackrel{C}{-\pi })\\\\ -------------------------------\\\\ \textit{horizontal shift of }\cfrac{C}{B}\implies \cfrac{-\pi }{2},\textit{ so of }(\pi )/(2)\textit{ to the right} \\\\\\ \textit{horizontal shrinkage of }B\implies 2, \textit{so by }(1)/(2)
User Shady
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories