92.8k views
0 votes
Describe the transformation of the following function y=tan(2x-pi)

1 Answer

1 vote

\bf ~~~~~~~~~~~~\textit{function transformations} \\\\\\ f(x)=Asin(Bx+C)+D \\\\ f(x)=Acos(Bx+C)+D\\\\ f(x)=Atan(Bx+C)+D \\\\ -------------------\\\\ \bullet \textit{ stretches or shrinks}\\ ~~~~~~\textit{horizontally by amplitude } |A|\cdot B\\\\ \bullet \textit{ flips it upside-down if }A\textit{ is negative}\\ ~~~~~~\textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if }B\textit{ is negative}\\ ~~~~~~\textit{reflection over the y-axis}


\bf \bullet \textit{ horizontal shift by }(C)/(B)\\ ~~~~~~if\ (C)/(B)\textit{ is negative, to the right}\\\\ ~~~~~~if\ (C)/(B)\textit{ is positive, to the left}\\\\ \bullet \textit{vertical shift by }D\\ ~~~~~~if\ D\textit{ is negative, downwards}\\\\ ~~~~~~if\ D\textit{ is positive, upwards}\\\\ \bullet \textit{function period or frequency}\\ ~~~~~~(2\pi )/(B)\ for\ cos(\theta),\ sin(\theta),\ sec(\theta),\ csc(\theta)\\\\ ~~~~~~(\pi )/(B)\ for\ tan(\theta),\ cot(\theta)

with that template in mind, let's check this one,


\bf y=tan(\stackrel{B}{2}x\stackrel{C}{-\pi })\\\\ -------------------------------\\\\ \textit{horizontal shift of }\cfrac{C}{B}\implies \cfrac{-\pi }{2},\textit{ so of }(\pi )/(2)\textit{ to the right} \\\\\\ \textit{horizontal shrinkage of }B\implies 2, \textit{so by }(1)/(2)
User Shady
by
8.7k points