26.7k views
0 votes
Solve for t. use the quadratic formula.

d=−16t^2+12t

User Soohyun
by
7.4k points

2 Answers

2 votes

Answer:


\frac{3-√(9-d)} {8}\text{ or }t=\frac{3+√(9-d)} {8}

Explanation:

Here, the given expression,


d= -16t^2+12t


\implies -16x^2+12t-d=0 ------(1)

Since, if a quadratic equation is,


ax^2+bx+c=0 ------(2)

By using quadratic formula,

We can write,


x=(-b\pm √(b^2-4ac))/(2a)

By comparing equation (1) and (2),

We get, a = -16, b = 12, c = -d,


t=(-12\pm √(12^2-4* -16* -d))/(2* -16)


t = (-12\pm √(16* 9-16* d))/(-32)


t = \frac{-12\pm √(16)* √(9-d)} {-32}


t = \frac{-12\pm 4√(9-d)} {-32}


t = \frac{4(-3\pm √(9-d))} {4(-8)}


t = \frac{-3\pm √(9-d)} {-8}


t = \frac{-3+√(9-d)} {-8}\text{ or }t=\frac{-3-√(9-d)} {-8}


\implies t = \frac{3-√(9-d)} {8}\text{ or }t=\frac{3+√(9-d)} {8}

Which is the required solution.

User Zoran Zaric
by
8.6k points
2 votes

Answer:


t\,=\,(-3+√(9+4d))/(-8)\:\:and\:\:(3+√(9+4d))/(8)

Explanation:

Given: d = -16t² + 12t

To find: t using quadratic formula

If we have quadratic equation in form ax² + bx + c = 0

then, by quadratic formula we have


x\,=\,(-b\pm√(b^2-4ac))/(2a)

Rewrite the given equation,

-16t² + 12t - d = 0

from this equation we have,

a = -16 , b = 12 , c = d

now using quadratic formula we get,


t\,=\,(-12\pm√(12^2-4*(-16)* d))/(2*(-16))


t\,=\,(-12\pm√(144+64d))/(-32)


t\,=\,(-12\pm√(16(9+4d)))/(-32)


t\,=\,(-12\pm4√(9+4d))/(-32)


t\,=\,(4(-3\pm√(9+4d)))/(-32)


t\,=\,(-3\pm√(9+4d))/(-8)


t\,=\,(-3+√(9+4d))/(-8)\:\:,\:\:(-3-√(9+4d))/(-8)


t\,=\,(-3+√(9+4d))/(-8)\:\:and\:\:(-(3+√(9+4d)))/(-8)


t\,=\,(-3+√(9+4d))/(-8)\:\:and\:\:(3+√(9+4d))/(8)

Therefore,
t\,=\,(-3+√(9+4d))/(-8)\:\:and\:\:(3+√(9+4d))/(8)

User EdYuTo
by
7.8k points