We can separate this into a rectangle and a triangle and then find the areas of these shapes separately. The triangle has a height of 9 - 5 = 4 inches, and a base of 6 inches. The rectangle will have a width of 4 inches and a length of 5 inches. Use the formulas to find the areas of these shapes and then combine them to find the area of the entire arrow:
Triangle:



Rectangle:



Now add the two areas together:

So your answer is C.