136k views
18 votes
Find the value of (3√√0.000064)^5


Find \: the \: value \: of \: \bigg(\sqrt[3]{ √(0.000064) } { \bigg)}^(5) \\


User Gentiane
by
4.0k points

2 Answers

7 votes

Answer:

0.00032

Explanation:

The value of interest is ...

(((64×10^-6)^(1/2))^(1/3))^5 = (2^6×10^-6)^(5/6) = 2^5×10^-5 = 0.00032

__

The applicable rules of exponents are ...


\sqrt[n]{x}=x^(1/n)\\\\(x^a)^b=x^(ab)\\\\(xy)^a=x^ay^a

User Luke Peckham
by
3.8k points
5 votes

Explanation:


\sf \: We \: have : \bigg( \sqrt[3]{ √(0.000064) } {\bigg) }^(5) \\


\sf = \bigg( \sqrt[3]{ \sqrt{ \frac{64}{ {10}^(6) } } } { \bigg)}^(5) \\


\sf = \bigg( \sqrt[3]{ \sqrt{ \bigg( \frac{8}{ {10}^(3) } } \bigg)^(3) } \bigg)^(5) \\


\sf = \bigg( \sqrt[3]{ \frac{8}{ {10}^(3) } } \bigg)^(5) \\


\sf = \bigg( \sqrt[3]{ \frac{ {2}^(3) }{ {10}^(3) } } \bigg)^(5) \\


\sf = \bigg( \sqrt[3]{ \bigg( (2)/(10) \bigg)^(3) } \bigg) ^(5) \\


\sf = \bigg( \bigg( (2)/(10) \bigg) ^{3 * (1)/(3) } \bigg) ^(5) \\


\sf = \bigg( \bigg( (2)/(10) \bigg) ^{ \cancel {\bf{3 }}* \frac{1}{ \cancel{ \bf3} }} \bigg) ^(5) \\


\sf = \bigg( (2)/(10) \bigg) ^(5 )


\sf = \frac{ {2}^(5) }{ {10}^(5) } \\


\sf = (2 * 2 * 2 * 2 * 2)/(10 * 10 * 10 * 10 * 10) \\


\sf = (32)/(100000) \\


\bf= {\boxed{0.00032}} \\

Another method:


\sf \: \bigg( \sqrt[3]{ √(0.000064) } {\bigg) }^(5) \\


\sf =[ \big{{(0.0000 64) ^{ (1)/(2) } \big}} ^{ (1)/(3) } { ] }^(5) \\


\sf = (0.000064) ^{ (1)/(2) * (1)/(3) + * 5} \\


\sf = (0.000064 {)}^{ (5)/(6) } \\


\sf = \bigg( (64)/(1000000) \bigg)^{ (5)/(6) } \\


\sf = \bigg( \frac{ {2}^(6) }{ {10}^(6) } \bigg) ^{ (5)/(6) } \\


\sf = [ \bigg( (2)/(10) \bigg) ^(6) ] ^{ (5)/(6) }\\


\sf = \bigg( (2)/(10) \bigg) ^{6 * (5)/(6) } \\


\sf = \bigg( (2)/(10) \bigg) ^{ \cancel{ \bf6 }* \frac{5}{ \cancel{ \bf6}} } \\


\sf = \bigg( (2)/(10) \bigg) ^(5) \\


\sf = \frac{ {2}^(5) }{ {10}^(5) } \\


\sf = (2 * 2 * 2 * 2 * 2)/(10 * 10 * 10 * 10 * 10) \\


\sf = (32)/(100000) \\


\sf = \boxed{ \sf0.00032}Ans. \\


\textsf{Please let me know if have any other questions.}\\

User David Burford
by
4.1k points