78,685 views
19 votes
19 votes
What is the slope of a line perpendicular to the line whose equation is

2x + 3y = 21. Fully simplify your answer.

User Valdetero
by
2.7k points

1 Answer

13 votes
13 votes

keeping in mind that perpendicular lines have negative reciprocal slopes, let's check for the slope of the equation above


2x+3y=21\implies 3y=-2x+21\implies y=\cfrac{-2x+21}{3} \\\\\\ y=\cfrac{-2x}{3}+\cfrac{21}{3}\implies y=\stackrel{\stackrel{m}{\downarrow }}{-\cfrac{2}{3}}x+7\qquad \impliedby \begin{array}c \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}

well then, that simply means that


\stackrel{~\hspace{5em}\textit{perpendicular lines have \underline{negative reciprocal} slopes}~\hspace{5em}} {\stackrel{slope}{\cfrac{-2}{3}} ~\hfill \stackrel{reciprocal}{\cfrac{3}{-2}} ~\hfill \stackrel{negative~reciprocal}{-\cfrac{3}{-2}\implies \cfrac{3}{2}}}

User Qiau
by
2.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.