The correct answer is: [A]: " 1944 pi cm sq" .
______________________________________________________
The exact surface area of the given "right cylinder" is: " 1,944 π cm² " .
_______________________________________________________
Step-by-step explanation:
______________________________________________________
The formula for the "surface area, S.A." of a right cone is:
______________________________________________________
→ S. A. = π r [ r + √(h² + r²) ]
______________________________________________________
in which: "S. A." is the "surface area" (in units of "cm² " ; in our case) ;
→ for which we shall solve;
π = π ; (Note, we are asked to solve for the EXACT surface area of the given "right cone" ; so we shall solve in terms of "π" ; & we note that the answer choices provided are all "in terms of π" ;
" r = "radius" of the [circular base] = diameter / 2 ;
= 54 cm / 2 = 27 cm ;
" h = perpendicular height = 36 cm " ;
____________________________________________________
→ Plug in our known values into the formula/equation ;
for the "surface area, S.A." of a right cone to solve:
____________________________________________________
→ S. A. = π r [ r + √(h² + r²) ] ;
→ S.A. = π * (27 cm) * [ 27 cm + √[ (36 cm)² + (27 cm)² ] ;
= π * (27 cm) * [ 27 cm + √[ (36² * cm²) + (27² cm²) ] ;
= π * (27 cm) * [ 27 cm + √[ (1296 cm²) + (729 cm²) ] ;
= π * (27 cm) * [ 27 cm + √ [ (1296 + 729) cm² ] ;
= π * (27 cm) * [ 27 cm + √ [ (1296 + 729) cm² ] ;
= π * (27 cm) * [ 27 cm + √ [ (1296 + 729) cm² ] ;
= π * (27 cm) * [ 27 cm + √ (2025 cm² ] ;
= π * (27 cm) * [ 27 cm + √ (2025 cm² ] ;
= π * (27 cm) * [ 27 cm + 45 cm ] ;
= π * (27 cm) * [ 27 cm + 45 cm ] ;
= π * (27 cm) * [ 72 cm ] ;
= π * (27 cm) * [ 72 cm ] ;
= (27 * 72) * π cm² ;
= (27 * 72) * π cm² ;
= " 1,944 π cm² " .
_______________________________________________________
Answer: [A]: " 1944 pi cm sq" .
_______________________________________________________
The exact surface area of the given "right cylinder" is: " 1,944 π cm² " .
_______________________________________________________